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ABSTRACT

L1 instruction fetch misses remain a critical performance
bottleneck, accounting for up to 40% slowdowns in server
applications. Whereas instruction footprints typically fit
within last-level caches, they overwhelm L1 caches, whose
capacity is limited by latency constraints. Past work has
shown that server application instruction miss sequences
are highly repetitive. By recording, indexing, and prefetch-
ing according to these sequences, nearly all L1 instruction
misses can be eliminated. However, existing schemes require
impractical storage and considerable complexity to correct
for minor control-flow variations that disrupt sequences.

In this work, we simplify and reduce the energy require-
ments of accurate instruction prefetching via two observa-
tions: (1) program context as captured in the call stack cor-
relates strongly with L1 instruction misses, and (2) the re-
turn address stack (RAS), already present in all high perfor-
mance processors, succinctly summarizes program context.
We propose RAS-Directed Instruction Prefetching (RDIP),
which associates prefetch operations with signatures formed
from the contents of the RAS. RDIP achieves 70% of the po-
tential speedup of an ideal L1 cache, outperforms a prefetcher-
less baseline by 11.5% and reduces energy and complexity
relative to sequence-based prefetching. RDIP’s performance
is within 2% of the state-of-the-art Proactive Instruction
Fetch, with nearly 3X reduction in storage and 1.9X reduc-
tion in energy overheads.
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Relative Performance (Relative to NoP)

Figure 1: Speedup under next-2-line (N2L) and an ideal-
ized instruction cache (Ideal) normalized to a cache without
prefetching (NoP).

1. INTRODUCTION

Recent research shows that L1 instruction fetch misses re-
main a critical performance bottleneck in traditional server
workloads [9, 8, 11, 12, 32], cloud computing workloads [7,
19], and even smartphone applications [10], accounting for
up to 40% slowdowns. Whereas instruction footprints typ-
ically fit comfortably within last-level caches, they over-
whelm L1 caches, whose capacity is tightly limited by la-
tency constraints. Intermediate instruction caches may re-
duce miss penalties, but are either too small to capture the
entire instruction footprint or have high access latencies,
which are then exposed on the execution critical path [7, 11].
Unlike L1 data misses, out of order mechanisms are ineffec-
tive in hiding instruction miss penalties. Figure 1 shows the
performance gap between a 32kB L1 cache without prefetch-
ing (“NoP”), the same cache with a conventional next-2-
line prefetcher (“N2L”), and an idealized (unbounded size,
but single-cycle latency; “Ideal”) cache for a range of cloud
computing and server applications. Instruction prefetching
has the potential to improve performance by an average of
16.2%, but next-line prefetching falls well short of this po-
tential. (For a brief description of the workloads and corre-
sponding performance metrics, see Section 4).



The importance of instruction prefetching has long been
recognized. Nearly all shipping processors, from embedded-
to server-class systems, include some form of next-line or
stream-based instruction prefetcher [13, 14, 26, 30, 31, 37].
Such prefetchers are simple and require negligible storage,
but fail to prefetch across fetch discontinuities (e.g., func-
tion calls and returns), which incur numerous stalls. Early
research attempts at more sophisticated instruction prefetch
leverage the branch predictor to run ahead of fetch [5, 24, 27,
28, 33, 36]. However, poor branch predictability and insuf-
ficient lookahead limit the effectiveness of these designs [9].
To our knowledge, such instruction prefetchers have never
been commercially deployed.

More recent hardware prefetching proposals rely on the
observation that instruction cache miss or instruction exe-
cution sequences are highly repetitive [8, 9]. These designs
log the miss/execution streams in a large circular buffer and
maintain an index on this buffer to locate and replay past
sequences on subsequent triggers. The most recent proposal,
Proactive Instruction Fetch (PIF) [8], can eliminate nearly
all L1 instruction misses, but requires impractical storage
and substantial complexity to correct for minor control-flow
variations that disrupt otherwise-repetitive sequences. Stor-
age (and hence, energy) requirements grow rapidly with code
footprint because these mechanisms log all instruction-block
fetches and must maintain an index by block address.

In this work, we seek to simplify and reduce the stor-
age and energy requirements of accurate hardware instruc-
tion prefetching. We exploit the observation that program
context, as captured in the call stack, correlates strongly
with L1 instruction misses. Moreover, we note that mod-
ern high-performance processors already contain a structure
that succinctly summarizes program context: the return
address stack (RAS). Upon each call or return operation,
RAS-Directed Instruction Prefetching (RDIP) encodes the
RAS state into a compact signature comprising the active
call stack, and direction/destination of the current call or
return. We find a strong correlation between these signa-
tures and L1 instruction misses, and associate each signa-
ture with a sequence of misses recently seen for that signa-
ture. By generating signatures on both calls and returns,
we construct signatures with fine-grained context informa-
tion that can prefetch not only on traversals down the call
graph, but can also prefetch accurately within large func-
tions and when deep call hierarchies unwind—a key advan-
tage over past hardware and software prefetching schemes
that exploit caller-callee relationships [2, 20]. Furthermore,
we find that RAS signatures are highly predictable—current
signatures accurately predict upcoming signatures, enabling
higher prefetch lookahead.

RDIP reduces area and overheads relative to past sequence-
based prefetchers because it records less state and requires
simpler indexing; we find that coverage saturates with only
64kB of storage (relative to over 200kB for [8]). Using
the gem5 [4] full-system simulation infrastructure running
a suite of cloud computing and server applications, we show
that RDIP achieves a performance improvement of up to
36% (avg 11.5%) over a prefetcher-less design, as compared
t0 13.5% (avg 4.8%) for a carefully tuned next-line prefetcher
and 40.1% (avg 12.9%) for PIF. PIF incurs over 3X higher
storage overhead and 1.9X dynamic energy overhead than
RDIP.
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2. RELATED WORK

Due to the performance criticality of instruction cache
misses, there is a rich body of prior work on instruction
prefetching. Even early computer systems included next-
line instruction prefetchers to exploit the common case of
sequential instruction fetch [1]. This early concept evolved
into next-N-line and instruction stream prefetchers [14, 26,
30, 37], which make use of a variety of trigger events and con-
trol mechanisms to modulate the aggressiveness and looka-
head of the prefetcher. However, next-line prefetchers pro-
vide poor accuracy and lack prefetch lookahead for codes
with frequent branching and function calls. Nevertheless,
because of their simplicity, next-line and stream prefetch-
ers are widely deployed in industrial designs (e.g., [13]). To
our knowledge, more sophisticated hardware prefetchers pro-
posed in the literature have never been deployed.

To improve prefetch accuracy and lookahead in branch-
and call-heavy code, researchers have proposed several branch
predictor based prefetchers [5, 27, 28, 33]. Run-ahead ex-
ecution [22], wrong path instruction prefetching [24], and
speculative threading mechanisms [34, 39] also prefetch in-
structions by using control flow speculation to explore ahead
of the instruction fetch unit. As shown by Ferdman et al. [8],
these prefetchers suffer from interference caused by wrong
path execution and insufficient lookahead when the branch
predictor traverses loop branches. RDIP instead bases its
predictions on non-speculative RAS state, which is more
stable. It is important to note that execution-path based
correlation has been shown to be effective for branch predic-
tion [23], dead-block prediction [17] and last touch predic-
tion [16], but none of these leverage the RAS to make their
respective predictions.

The discontinuity prefetcher [32] handles fetch disconti-
nuities but its lookahead is limited to one fetch discontinu-
ity at a time to prevent run-away growth in the number of
prefetch candidates. The branch history guided prefetcher
(BHGP) [33] keeps track of the branch instructions executed
and near future instruction cache misses, and prefetches
them upon next occurrence of the branch. BHGP cannot
differentiate among invocations of the same branch, which
results in either unnecessary prefetches or reduced coverage.
In RDIP, by using the RAS (instead of a single entry) to
make prefetching decisions, different invocations of a func-
tion call are uniquely identified leading to more accurate
prefetching.

TIFS [9] and PIF [8] address the limitations of branch-
predictor-directed prefetching by directly recording the in-
struction fetch miss and instruction commit sequences, re-
spectively. Hence, their accuracy and lookahead are inde-
pendent of the predictability of individual branches. Both
designs maintain an ordered log of instruction block ad-
dresses and an index that maps particular fetch events (called
trigger accesses) to locations in the log. Whenever a trigger
access results in a hit in the index, the prefetcher begins is-
suing prefetch requests according to the recorded history in
the log. PIF improves over TIFS by recording the commit-
ted instruction sequence, and hence is immune to disrup-
tions from wrong-path execution that harm the accuracy
and coverage of TIFS. To similarly avoid disruptions from
wrong-path calls and returns, RDIP updates its signatures
as call and return instructions commit (rather than at fetch
as for a conventional RAS), which substantially improves its
ability to use current signatures to predict future signatures.
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Figure 2: Prefetcher Design.

Both TIFS and PIF require considerable on-chip storage,
which in turn leads to high energy requirements. TIFS adds
a 15-bit overhead to every L2 tag array entry to maintain its
index (totaling to 240kB in an 8MB L2) and requires an ad-
ditional 156kB (also within the L2) to store its instruction
miss log. Hence, each access to prefetcher meta-data in-
curs up to two L2 accesses, at a considerable cost in energy.
PIF employs dedicated storage structures, but even those
structures total over 200kB, and are accessed frequently. In
contrast, as we show later, RDIP requires only 64kB of ded-
icated storage. We analyze energy overheads of each ap-
proach in greater detail in Section 5.4.3.

SHIFT [15] is a concurrent work that employs a similar
record and replay mechanism as PIF, while reducing stor-
age overhead per core. The key insight behind SHIFT is
that different cores in a multi-core server system usually
execute similar instruction sequences. By adopting shared
prefetcher-related storage for the different cores, SHIFT re-
duces overall storage overhead per core. In contrast, RDIP
does not rely on the assumption that neighboring cores exe-
cute the same programs, and is more storage efficient when
a server system allocates less than 4 cores per workload.

Some prior hardware-software hybrid prefetchers track func-

tion caller-callee relationships and initiate next-N-line in-
struction prefetching for a function’s callees upon entry to
the caller [2, 20]. Like RDIP, these techniques exploit rela-
tionships in a program’s control flow graph. However, RDIP
uses additional RAS history, rather than just its leaf, which
allows it to distinguish multiple invocations of the same func-
tions from different call sites, improving accuracy. Moreover,
RDIP prefetches on traversals both up and down the call
stack, enabling timely and accurate prefetch when control
returns into the body of a large function.

Other software techniques involve relocating infrequently
executed code to increase sequential code execution [12, 25,
38] or compiler-inserted instruction prefetches (e.g., [20,
21]). These techniques are orthogonal to RDIP and can
provide synergistic benefits.

3. DESIGN

We next explain the design and rationale for RDIP, which
is based on three key observations:
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e Instruction cache misses correlate strongly to program
context; that is, the same misses recur each time a
context is revisited.

e Program call graphs follow repetitive patterns, hence
a current program context can be used to accurately
predict upcoming program contexts.

e The state of the return address stack succinctly sum-
marizes program context.

The current call stack accurately reflects the program ex-
ecution path taken to reach a particular point in the code.
The contents of the instruction cache are determined by the
instruction fetches encountered along this execution path.
So, both the initial cache state upon entering a particular
context and the misses incurred during that context will tend
to be similar to prior invocations of the same context. The
central idea of RDIP is to record the instruction cache misses
seen during a particular program context and prefetch these
upon the next occurrence of the same program context.

However, issuing prefetch requests upon entering a pro-
gram context (i.e., after executing the call instruction that
branches into a function) is too late—the processor will likely
stall on a miss to the call’s target. Instead, prefetch requests
arising during a particular program context must be issued
during a preceding context. Fortunately, the call graphs of
server applications tend to be predictable and hence near-
future contexts can be predicted accurately, providing ade-
quate lookahead.

RDIP operates in three steps:

1. Record the instruction cache misses seen during a par-
ticular program context.

2. Predict a future program context based on the current
program context.

3. Prefetch cache misses correlated to the future program
context.

Throughout our description, we refer to Figure 2, which
depicts the RDIP design.



PC Type RAS CurSig PrevSig I$-Miss? Description

0x400 = 0x048, 0x048|0 0x010 Initial state including call from 0x048
0x404 0x048,

0x408 0x048, YES Log Miss: Sig=0x0|0, Addr=0x408
0x40C = 0x048,

0x410 CALL 0x048, 0x41440x048|0  0x048|0 Function Call

0x100 = 0x048,0x414 YES Log Miss: Sig=0x048|0, Addr = 0x100
0x104 RET  0x048,0x414 0x41460x048|1 0x414®0x048|0 Function Return

0x414 = 0x048,

0x418 =« 0x048, YES Log Miss: Sig=0x414®0x048|0, Addr = 0x418
0x420 % 0x048,

Figure 3: Example of RDIP Operation.

3.1 Program Context Representation

The active program context is reflected by the current con-
tent of the RAS. As the number of bits in the RAS is large
and contains a great deal of redundancy, we can compact it
into a smaller representation through hashing. In our im-
plementation we simply XOR the bit-string representing the
RAS state to a desired bit width (we find that 32 bits suf-
fice). We call the resulting hash value a signature. Because
we use a commutative operation, signatures can maintained
in a single register and updated incrementally in response
to RAS pushes, pops, and overflows.

The call stack reflected in the RAS, and its corresponding
signature, is an indication of the execution path taken to
reach a particular point in the program, which in turn will
determine the content of the L1 instruction cache. How-
ever, when a single caller function invokes many callees,
upon return from each callee, the RAS state (and signa-
ture) is identical, but subsequent instructions will differ as
they correspond to different segments of the caller. While
each segment could suffer different instruction cache misses,
they all associate with the same signature.

To distinguish these return sites, we form signatures be-
fore processing return instructions (i.e., before popping the
RAS) but after call instructions (i.e., after pushing the RAS)
and further extend the signature with a bit to indicate the
direction of the control transfer (call or return). Hence, sig-
natures always make use of all available information, and
RDIP triggers prefetches on traversals both up and down
the call stack.

3.2 Logging Misses

The Miss Table records the association between a signa-
ture and a set of instruction cache misses that have been
recently observed for that signature. It is a set-associative
structure accessed by signature, with least-recently-used re-
placement. During execution, instruction cache miss ad-
dresses are recorded in a circular buffer, the Current Signa-
ture Misses buffer. Whenever a call or return instruction
is retired, and therefore the active RAS signature changes,
we first record the misses logged in the Current Signature
Misses buffer into an appropriate entry in the Miss Table
(we discuss the signature to which these misses should be
associated in the next subsection). We then clear the Cur-
rent Signature Misses buffer. The Current Signature Misses
buffer is organized as a circular buffer, hence, misses will be
discarded if the buffer overflows.

To reduce the size of miss table entries, we first compress
the sequence of misses using a scheme similar to that pro-
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posed for PIF [8]. The key observation is that the misses
associated with a particular signature usually comprise a
small number of contiguous blocks separated by discontinu-
ities due to local control flow. For each nearby region of
blocks, we record a single base address and then a bit vec-
tor indicating the other nearby blocks (at higher and lower
addresses) that should also be prefetched. We provision stor-
age for two (or more) such regions per signature, to account
for a larger discontinuity within a program context. We ex-
amine sensitivity to the bit vector encoding and number of
regions in Section 5.

When updating an existing miss table entry, we merge
newly recorded misses with the existing encoding of regions
when possible (i.e., setting additional bits for an existing
base address), replacing regions in round-robin fashion when
merging is impossible (e.g., if the newly recorded misses are
not near the previously recorded regions).

3.3 Program Context Prediction

Nominally, we might associate misses with the active sig-
nature when those misses were observed. However, under
such a design, when we later try to use the Miss Table to
predict future misses, our prefetches will not be timely; the
interval between the signature change (call or return) and
the misses is too short to hide their latency. Instead, when
we log misses, we record them with a Previous Signature, as
shown in Figure 2. By maintaining a FIFO queue of previous
signatures, rather than a single previous signature, we can
increase RDIP’s prefetch lookahead. We examine sensitivity
to the number of signatures of lookahead in our evaluation.
We will show that a lookahead of one signature is sufficient
to assure timely prefetch.

Alternatively, one might design RDIP with separate sig-
nature and miss prediction tables (as in two-level branch
predictors), which would allow signature lookahead to be
varied dynamically at run time. However, such a design re-
quires far more storage for the additional signature table,
hence, we do not consider it further.

Upon every signature change, RDIP consults the miss ta-
ble. If it finds a match, it issues the prefetch requests in-
dicated in the table entry. It is important to note that ac-
cessing the Miss Table and issuing prefetch requests lie off
the critical path of instruction fetch and hence the hardware
structures can be pipelined to meet cycle time constraints.
Pipelining the Miss Table delays the issue of prefetches by
up to a few cycles. However, RDIP provides sufficient looka-
head to hide small increases in prefetch issue latency.



3.4 Example

Figure 3 shows an example of how RDIP constructs signa-
tures and logs misses. Each row of the table represents the
execution of a single instruction. PC indicates the instruc-
tion PC, while Type indicates the type of instruction (Call,
Return, or other). RAS shows the state of a 2-entry RAS,
while Signature shows a representation of the new signature
value each time the signature changes. The signatures in the
table are shown as a list of return addresses, separated by &
operators, followed by a 0 indicating a call or 1 indicating a
return operation caused the signature change. ICache Miss
indicates if a miss is incurred when fetching a particular in-
struction, while the Description describes the actions taken
by RDIP.

Initially, the RAS has a single valid return address (0x048),
execution begins at address 0x400, and the initial active
signature is (0x048|0), while the previous signature (not
shown) is (0x0|0). When the instruction at address 0x408 is
fetched, an instruction cache miss occurs, and address 0x408
is logged. The call instruction (0x410) causes the active sig-
nature to change to (0x414®0x48|0), and the logged misses
are recorded in the signature table in the entry for the pre-
vious signature (0x0]0). We again log a miss for instruction
0x100. Upon execution of the return instruction (0x104),
the active signature again changes, to (0x414®0x48|1). As
before, the logged misses are entered into the miss table and
associated with the previous signature (0x048|0).

4. METHODOLOGY

We next describe the simulation infrastructure and work-
loads we use to investigate RDIP.

4.1 Simulation Infrastructure

We use the gemb [4] simulation infrastructure for all of
our analysis. All results were obtained by simulating an
out-of-order core executing the ARM instruction set, the
configuration details of which can be found in Table 1. Our
prefetcher was evaluated using a combination of trace-based
studies for the sensitivity analyses and detailed full-system
simulation for performance studies. In all cases, we capture
a checkpoint once steady state behavior has been reached.
From this checkpoint, we either generate an instruction fetch
trace for offline analysis or run performance simulations with
a detailed CPU model and memory system.

For our trace-based studies, we collect execution traces
of one billion instructions for each benchmark. We analyze
these traces to guide the final design of RDIP. In particu-
lar, we use this trace-based methodology to tune the size of
the miss table, choose a hashing algorithm for the signature
compression, and experiment with techniques for compress-
ing a sequence of misses. We validate these design decisions
using execution-driven full-system simulation.

All performance results derive from full-system simula-
tion. We launch the simulation from a checkpoint and sim-
ulate two billion instructions. We report the metric used to
measure performance for each workload in the descriptions
of the workloads.

‘We obtain energy-per-access, static power, and access time
estimates for RDIP’s miss table and structures used in other
prefetchers using CACTI 5.3 [35].
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2GHz 00O
6-wide Dispatch, 8-wide Commit
96-entry ROB, 16-entry RAS
32-entry Issue Queue
12-entry Skid Buffer
32kB, 2-way, 64B
1ns cycle hit latency, 4 MSHRs
64kB, 2-way, 64B
2ns hit latency, 6 MSHRs
2MB, 8-way, 64B
12ns hit latency, 16 MSHRs
2GB, 54ns access latency

Core

I-Cache

D-Cache

L2-Cache

Main Memory

Table 1: Simulator Configuration.

4.2 Workloads

We study a number of server and cloud workloads that
have large instruction footprints. Several of our workloads
use operating system services intensively, hence, we use full-
system simulation and run our workloads on Ubuntu 12.04
(Linux kernel v3.3). Unlike oft-used user-level CPU-intensive
benchmark suites (e.g., SPEC), our workloads comprise many
thousands of code lines overwhelming L1 instruction caches.
Descriptions of each follow:

gemb5. To investigate a design automation workload, we
simulate the gem5 simulator running within itself. The
simulated gemb instance is simulating the twolf benchmark
from the SPEC2000 suite, using a simple CPU model and
a timing-accurate memory system. The gemb simulator is a
large C++ program with over 200k lines of code that makes
extensive use of virtual function calls. The code size cou-
pled with pervasive virtual function indirection renders sim-
ple prefetchers ineffective. The performance metric is IPC
when simulating gem5 (which is, in turn, simulating twolf).

Hadoop. To analyze massive amounts of unstructured data,
companies have turned to MapReduce implementations such
as Apache’s Hadoop. Hadoop is a shared-nothing parallel
processing framework designed to run on scale-out systems
and its use over the last few years has exploded. For our
simulations we use an in-house proxy for hadoop (written in
Java), and carrie out the following Hadoop mapping tasks:

e Teraread (hdtr): This hadoop workload reads through
terasort input data and writes it back to a different
part of the filesystem. This workload represents small
mapping tasks and exercises the I/O sub-system and
associated APIs.

e Word Count (hdwc): Word Count builds a map of
words to counts found in the input corpus, useful for
building indexes.

The performance metric for Hadoop is the rate at which
data is processed and written back to the file system.

Memcached. In memory key-value stores such as mem-
cached are widely used by internet services operators to en-
able scalable web services. Memcached clusters reduce pres-
sure on back-end databases and drastically reduce the av-
erage latency to retrieve cached data. Memcached clusters
generally serve as a best-effort cache for a database back-
ing store, as memcached does not offer the same resiliency



guarantees provided by a database. Facebook reports us-
ing memcached clusters of over 800 servers that cache over
28 TB of data [29]. The behavior of a memcached server
varies significantly with the kind of traffic it services, in par-
ticular the distribution of requests sent by clients and the
size distribution of the cached objects [3]. Note that, al-
though memcached itself contains relatively little code (un-
der 10,000 lines), it makes extensive use of operating system
services and the networking stack, resulting in a kernel in-
struction footprint that overwhelms the L1 cache [18]. We
simulate two different workloads running on top of Mem-
cached:

e MicroBlog (memb): This workload represents queries
for short snippets of text (e.g., user status updates).
We base the object size and popularity distribution on
a sample of “tweets” (brief messages shared between
Twitter users) collected from Twitter. The text of a
tweet is restricted to 140 characters, however, associ-
ated meta-data brings the average object size to 1kB
with little variance. Even the largest tweet objects are
under 2.5kB in size.

FriendFeed (mcff ): Our second workload demonstrates
heavy use of MULTI-GET requests. Facebook has dis-
closed that MULTI-GETs play a central role in its use
of memcached [6]. This workload seeks to emulate the
requests required to construct a user’s Facebook Wall,
a list of a user’s friends’ most recent posts and activity.
We use the distribution of requests from the MicroBlog
workload, as Facebook status updates and tweets have
similar size and popularity characteristics [3]. How-
ever, instead of issuing single GET requests individ-
ually, a group of roughly 100 GETs is batched to-
gether to approximate a user having as many friends.
MULTI-GETs improve efficiency because they incur
fewer trips through the TCP/IP stack, which reduces
pressure on the ICache.

We quantify performance by reporting the number of re-
quests per second the server achieves when offered a load
that saturates the CPU (no idle time), but does not satu-
rate the network interface.

SSJ. Server Side Java (SSJ) tests Java performance in the
SPECpower benchmark, and is similar to the SPECjbb bench-
mark. The benchmark is written in Java and runs on top
of a commercial JVM. The JVM we study performs just-
in-time compilation and aggressively inlines method invo-
cations when generating native code sequences in its code
cache. Hence, the JIT process flattens much of the control
flow hierarchy present in the original Java code, with control
transfers through branches and jumps rather than calls and
returns. As such, this workload represents a particularly
challenging case for RDIP. The workload contains a mix of
six different transaction types and we quantify performance
by measuring the transaction completion rate.

S. RESULTS

We next evaluate the effectiveness and impact of RDIP
relative to existing prefetching approaches and the potential
gains from an ideal instruction cache. First, we validate the
key premises underlying RDIP. Then, we perform sensitiv-
ity studies to size the hardware structures in RDIP. Next,
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Figure 4: Coverage vs. Prefetch Depth. As the number
of past misses (and correspondingly, number of prefetches)
associated with each signature increases, coverage improves,
saturating between 10 and 20 for nearly all workloads.

we show the coverage and performance achieved by RDIP
and contrast them with the state-of-the-art PIF prefetcher
and a basic Next-2-Line prefetcher. We finally compare our
storage and energy overheads against PIF.

5.1 Prefetch Accuracy & Coverage

We begin by validating the key premises on which RDIP
rests, namely that instruction misses correlate strongly to
signatures and that signatures themselves are predictable.

5.1.1 Potential of Signature Based Prefetching

The key premise of RDIP is that the set of instruction
cache misses incurred each time a signature recurs is repet-
itive. This phenomenon allows us to record previously seen
misses for a signature and prefetch them upon the next oc-
currence of the signature, thus eliminating potential misses.
The intuition underlying this premise is that the signature is
an indication both of the past control-flow, which determines
the L1 instruction cache content, and upcoming control flow,
which determines the set of cache blocks that will be needed
in the near future.

We examine this key issue in Figure 4. The graph shows,
for all of our benchmarks, potential RDIP coverage as a func-
tion of the history depth. Here, we define coverage as the
fraction of misses incurred while a signature is active that
appear within the previously recorded history for that sig-
nature. For this experiment, we do not restrict the storage
in the Miss Table, rather, we assume an unbounded num-
ber of entries and maintain up to 50 distinct miss addresses
per signature, updated in an LRU fashion. Figure 4 shows
that recording as few as 10 cache block addresses achieves
nearly 80% coverage for most benchmarks. These results
demonstrate that, with the notable exception of SSJ, our
main premise holds—misses are strongly correlated to sig-
natures, and RDIP has the potential to eliminate most of
the instruction cache misses. We explore the Miss Table
entry organization in greater detail in subsequent sections.

In SSJ, the impact of the JVM’s just-in-time compilation
can be seen: far more misses must be tracked for each signa-
ture to achieve high coverage. Because of inlining and loop
unrolling, the JIT tends to generate long functions without
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Figure 5: Future Signature Prediction Accuracy: The ac-
curacy with which future signatures can be predicted given
the current signature. LookAhead-X indicates a prediction
X signatures into the future.

internal calls and returns. Control is returned to the JVM
upon a method invocation from within generated code. The
RAS state therefore reflects the state of the JVM, rather
than the executing Java program, when control is trans-
ferred into the code cache. Hence, the control flow structure
of the original Java code is obscured. Nevertheless, RDIP
still has the potential to eliminate about half of instruction
cache misses within practical storage constraints.

5.1.2  Signature Prediction

The second premise of RDIP is that the current RAS sig-
nature effectively predicts upcoming signatures. That is,
that a program’s call graph is repetitive. It is this property
that enables RDIP to achieve sufficient lookahead to hide
prefetch latency. Inaccurate signature prediction leads to
spurious prefetches—the wrong blocks will be fetched from
L2, wasting bandwidth and polluting the cache. We begin
our evaluation by demonstrating that signatures can be pre-
dicted.

Figure 5 shows the RAS signature prediction accuracy as
a function of lookahead, that is, how many signatures into
the future we attempt to predict. Predicting the next RAS
signature is synonymous with predicting the next program
context—the next call or return operation. The three bars
for each benchmark correspond to lookaheads of one, two,
and three signatures, respectively. The further into the fu-
ture we predict, the less accurate the prediction, as a con-
siderable number of control flow decisions may be made be-
tween three consecutive call/return operations. The vertical
axis indicates the prediction accuracy, where 1.0 indicates
that future signatures are always correctly predicted.

We find that signature prediction accuracy is high—80%
for a one-signature lookahead on average. Greater looka-
head reduces accuracy. Fortunately, however, we find in our
timing simulations that a lookahead of a single signature is
sufficient to hide the L2 instruction fetch latency.

For SSJ, though our previous results indicated instruction
cache misses correlate poorly to RAS state for generated
code, we nevertheless find here that the call graph within
the JVM remains predictable, as demonstrated by the high
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signature prediction accuracy.

As discussed in Section 3, we do not explicitly predict sig-
natures using a signature table. Rather, we associate misses
in the Miss Table with the preceding signature, this associ-
ation implicitly relies on signature predictability.

5.2 Practical Design

In this subsection, we optimize the storage requirements
of RDIP to arrive at a practical design. The storage re-
quirements for RDIP are determined by two factors: (1) the
number of signatures to be tracked, and (2) the number of
associated misses per signature. Below, we analyze both
these factors.

5.2.1 Few Signatures Account for Most Misses

The number of distinct signatures encountered in each
benchmark is quite high (16000 for SSJ). Tracking all of
these signatures would require prohibitive storage. Fortu-
nately, we observe that only a few signatures account for the
vast majority of instruction cache misses in each benchmark,
as shown in Figure 6. Each graph shows the cumulative frac-
tion of misses attributable to each distinct signature, with
distinct signatures sorted along the x-axis in descending fre-
quency of occurrence. The figure demonstrates that a few
thousand most frequently occurring signatures account for
the vast majority of misses in all cases. Thus, tracking just
these signatures is sufficient to achieve near-peak coverage.
In the following subsection, we look at the actual number of
signatures that must be tracked in the Miss Table.

5.2.2 Miss Table Size

Clearly, an unbounded Miss Table is infeasible. The Miss
Table is indexed in a fashion similar to a cache in that the
last N bits of the signature are used to index the table (where
N is loga size of the table) and the remaining bits are used
as a tag. If a signature misses in the table, no prefetches are
issued.

We sweep a range of practical sizes for the Miss Table,
from 256 to 64K entries. We assume a 4-way set-associative
structure. The 64K-entry table achieves 99% hit rate and
results in no performance loss when compared to an infinite-
storage Miss Table. We tried all power-of-two sizes between
256 and 64K and report the most relevant subset in Figure 7.
We select a 4K-entry miss table for our final design, as it
achieves a 96% hit rate on average while reducing storage
by 94% when compared to a 64K-entry miss table. Next we
look at the number of misses that are associated with each
signature in the Miss Table.

5.2.3 Miss Table Entry Encoding

As shown in Figure 4, storing just a few instruction cache
misses (about 15) can result in coverages >80% for RDIP.
However, storing complete addresses for 15 cache blocks in
each Miss Table entry remains prohibitive. Fortunately, as
observed by Ferdman et al. [8], misses tend to be closely
clustered with only a few discontinuities. Hence, we adopt a
compression scheme similar to theirs to reduce the number
of bits required in each Miss Table Entry. Each Miss Table
Entry stores one or more trigger addresses (each 26 bits
long) and an associated bit vector (8 bits long) that indicates
which surrounding blocks to prefetch.
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Miss Table Hit Rate.

We perform a sensitivity study to discover the impact of
varying the number of trigger addresses. We also study the
width of the bit vector indicating the surrounding blocks,
but found no improvement when increasing the bit vector
length above eight bits. The coverage achieved for a varying
number of trigger addresses is presented in Figure 8. Cov-
erage, here, is defined as the fraction of misses that can be
eliminated by RDIP when restricted to an encoding scheme
with the specified number of trigger addresses, varying from
one to five. Increasing the number of trigger addresses al-
lows the prefetcher to correctly capture miss sequences for
functions with more complex internal control flow (i.e., more
jumps and fetch discontinuities) and also account for virtual
function calls. As can be seen in the graph, adding addi-
tional trigger addresses substantially improves performance
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Figure 8: Miss Table Entry: No. of Trigger Addresses vs
Coverage. Average coverage achieved is around 75% when
3 or more triggers are used. We use 3 trigger addresses and
associated bit-vectors for each Miss Table Entry.

over a single trigger address. However having additional
triggers implies additional storage. We select 3 triggers as a
sensible trade-off between storage cost and coverage. As ex-
pected, SSJ has the lowest coverage among all benchmarks.
We have found that even 10 triggers is insufficient to achieve
perfect coverage for SSJ.

5.2.4  Sensitivity to RAS size

Next, we analyze the sensitivity of RDIP to the number
RAS entries used to form a signature. RDIP only consid-
ers non-speculative call/return instructions when construct-
ing the signature to minimize spurious signature changes
and prefetch requests. Processors maintain some notion of
non-speculative RAS to recover from mispredicted branches.
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Figure 9: RDIP sensitivity to RAS size: A 4-entry RAS
performs best.

This non-speculative RAS state (which is referred to simply
as “RAS” from here on) is used by RDIP for signature gener-
ation. For the results presented in Figure 9, we use the top N
entries of the RAS. RDIP with a larger RAS trades off miss
table hit rate (due to more distinct signatures competing for
the same miss table capacity) against future signature pre-
dictability (a larger RAS implies fewer overflows and more
distinct signatures to identify program contexts). As can be
seen from Figure 9, RDIP’s performance is maximized with
a 4-entry RAS; a smaller RAS sacrifices too much signature
predictability while a larger RAS increases miss table con-
flicts. We use a 4-entry RAS for all other RDIP results.
(Note that the branch predictor continues to use a 16-entry
RAS in all cases).

5.2.5 Practical Configuration

In summary, we configure RDIP with a 4K-entry miss
table, each having three trigger addresses and an 8-bit vector
of blocks to prefetch. The total storage requirement is about
63kB. In the following section we analyze the performance
of RDIP relative to alternative prefetching schemes.

5.3 Performance

In this section, we contrast the performance of RDIP with
other relevant prefetcher designs. Throughout this section,
we consider five prefetcher designs:

NoP represents a system lacking an I-Cache prefetcher.

e N2L is a standard next-2-line prefetcher, typical of cur-
rent processors. We have tried several other prefetch
depths, and found next-2-line to perform best.

e PJIF is our implementation of Proactive Instruction
Fetch proposed by Ferdman et al. [8], which is the
most effective instruction prefetching design reported
to date.

e RDIP is our prefetcher design.
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Figure 11: Coverage and Erroneous Prefetches. Each bar is
divided into three segments, Prefetch Hits eliminated by the
prefetching method, remaining Misses, and, above 100%, the
number of Erroneous Prefetches normalized to the number
of hits+misses.

e [deal is an unrealizable 1MB instruction cache with
the same latency as the 32kB cache. It easily captures
working sets for all workloads and acts as an upper
bound for performance of history-based schemes like
RDIP and PIF.

We first discuss Figure 10, which shows the decrease in
instruction cache miss rate for various prefetcher configura-
tions across benchmarks. While RDIP reduces overall miss
rate by 72.4%, N2L reduces it by only 28.5% and PIF by
74.2% over the baseline NoP case. These reductions result in
corresponding improvements in performance as shown later.

Next, we discuss the overall effectiveness of the prefetch-
ers (N2L, PIF, RDIP) in terms of the fraction of misses
eliminated and the number of erroneously prefetched blocks
transferred from L2 into the L1 cache. In Figure 11, we
show the number of prefetch hits, misses, and erroneous
prefetches.
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Figure 12: Performance gains across prefetching schemes.

Erroneous prefetches hurt performance in two ways: (1)
they waste L1-L2 bandwidth, and (2) they displace poten-
tially useful blocks in the L1 cache. In all benchmarks ex-
cept gemb, RDIP issues fewer erroneous prefetches than even
N2L. PIF almost always issues many more prefetch requests
than RDIP. This result is to be expected as PIF has no
way of predicting when the current temporal stream being
prefetched terminates. To provide timely prefetches, the
PIF prefetch engine traverses well-ahead of the actual com-
mit stream. Thus, erroneous prefetches are issued past the
end of every temporal stream. Additionally, PIF uses the
PC of the head of a temporal stream to identify/distinguish
streams. However, the same PC sometimes results in a miss
in different program contexts; PIF’s stream detection mech-
anisms is unable to distinguish such differing contexts, lead-
ing to a decrease in accuracy (but, generally, little decrease
in coverage since the correct stream is often identified on the
next miss).

RDIP achieves much of the coverage possible with PIF,
while issuing far fewer requests. RDIP’s greater accuracy
leads to significant energy savings, as we show in Section 5.4.

As can be seen from Figure 12, averaged across the work-
loads, the ideal cache (Ideal) improves performance by 16.2%,
which is substantially better than the 4.8% available from a
next-2-line prefetcher. The frequent function calls and fetch
discontinuities in these benchmarks give rise to the relatively
poor performance of a next-2-line prefetcher. PIF improves
performance by as much as 40% and by 12.9% on average.
RDIP outperforms the next-2-line prefetcher and performs
comparably to PIF in all cases except SSJ. N2L is relatively
effective for SSJ because the JIT frequently generates long
sequential functions, due to inlining and loop-unrolling. PIF
is similarly able to learn these long miss sequences, since it
relies on miss addresses rather than calls and returns to dis-
tinguish streams. A hybrid of RDIP and N2L might reclaim
some of the lost opportunity on SSJ. Overall, RDIP im-
proves performance by as much as 33% (11.5% on average),
and realizes over 70% of the possible performance achieved
with an Ideal instruction cache.

5.4 Energy and Storage Overheads

In this section, we present the storage and energy require-
ments of RDIP and contrast them with the requirements of
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Figure 13: Iso-storage study (64kB).
RDIP || PIF
Structure MissTable || HistoryBuffer IndexTable
Size 64kB 136kB 68kB
Access Energy 13pJ 32pJ 11pJ
Static Power 12mW 39mW TmW
Access Time 0.33ns 0.45ns 0.30ns

Table 2: Energy and Power Estimates for Hardware struc-
tures in RDIP and PIF.

PIF. The original report on PIF does not explicitly enumer-
ate the storage requirements of the design, so we must infer
some structure sizes from other results reported in the work.

5.4.1 Hardware Overhead

RDIP’s storage overhead is almost entirely in the Miss
Table. Based on studies presented earlier in this section, we
size the Miss Table to have 4K entries with each entry as
described previously. Each tag is 22 bits long, each trigger
address is a cache block address and hence is 26 bits long.
We use an 8-bit vector to identify nearby misses. Thus,
the total storage per entry is 16 bytes (22+3*(26+8) bits),
which results in a total structure size of about 63kB (we
use 64kB in CACTI for energy calculations). The storage
required by PIF includes a 32K entry history buffer, with
each entry storing a cache block region (26+8 bits), which
implies a 136kB (128kB in CACTTI) history buffer as well as
an index table, which we estimate at 68kB (64kB in CACTI,;
the index table must be large enough to refer to each unique
trigger address in the history buffer). The estimate for index
table size is based on earlier work [9], which employs similar
structures. RDIP reduces storage by at least 3X compared
to PIF.

5.4.2 ISO-storage Comparison

In this section, we present an iso-storage comparison be-
tween N2L, PIF and RDIP. We configure each prefetcher
with a storage overhead budget of 64kB. In case of N2L, we
employ a 96kB I-Cache with a hit latency of 3ns as opposed
to 32kB and 1ns for PIF and RDIP. PIF was configured
to have 8K-entry history buffer and index table. As can
be seen from Figure 13, RDIP performs best of the three.
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Figure 14: Energy Efficiency PIF vs RDIP.

Benchmark PIF RDIP Ratio
gemb 23.28 29.11 0.80
Hadoop-teraread 10.76 4.05 2.65
Hadoop-wdcnt 9.44 3.16 2.98
SSJ 22.07 7.17 3.07
MC-FriendFeed  23.74 16.3 1.46
MC-Microblog 66.68 41.84 1.59

Table 3: Dynamic Energy Overhead per Instruction in pJ.

The performance of N2L with a large I-Cache highlights the
criticality of maintaining low I-Cache hit latencies. RDIP
comes out better than PIF for the given storage budget as
RDIP tracks only I-cache misses where as PIF tracks all the
accesses made.

5.4.3 Energy Overhead

Here we compare the energy and power requirements of
RDIP and PIF. In Table 2, we present static power require-
ments, which we obtain from CACTI [35]. Based on Table 2
and access counts to various structures (including I-Cache
and L2-Cache), we estimate the average dynamic energy
overhead per instruction for PIF and RDIP. We report them
in Table 3.

The line (right y-axis) in Figure 14 (PIF/RDIP) shows
that PIF consumes nearly 1.9X more dynamic energy per
instruction, on average, when compared to RDIP. This over-
head is due to its large structures and more accesses to these
structures and the L2-Cache. Interestingly, RDIP’s energy
overhead is only 7% more than N2L. Despite the additional
storage structure, RDIP’s greater accuracy as compared to
N2L results in reduced L2 accesses, offsetting the storage
energy overhead. Figure 14 also shows the percent of total
dynamic energy which was “usefully” spent, for both PIF
and RDIP. “Useful” energy is defined as the energy spent in
prefetching cache blocks from L2 to L1 that subsequently
resulted in prefetch hits. The “non-useful” component of
energy arises due to the static energy of prefetcher-specific
hardware structures and erroneous prefetches. For RDIP,
nearly 67% of the energy spent goes towards transporting
useful cache blocks, while for PIF, only 40% of energy is
usefully spent.

270

These results show that RDIP, though marginally outper-
formed by PIF, is more energy and power efficient, reducing
prefetcher related energy consumption by 1.9X.

6. CONCLUSIONS

Recent research shows that L1 instruction fetch misses re-
main a critical performance bottleneck, accounting for up
to 40% slowdowns in server applications. While instruction
footprints comfortably fit in the last-level caches, they over-
whelm typical L1 instruction caches, which are limited by
strict latency constraints.

In this work we showed that the RAS captures the pro-
gram context and correlates strongly with L1 instruction
cache misses. This observation allowed us to develop a
prefetcher that associates prefetch operations with signa-
tures formed from the RAS state. Our RAS-Directed In-
struction Prefetcher is able to realize nearly 70% of the total
possible performance improvement of an impractically large
L1 instruction cache resulting in a 11.5% improvement in
overall performance over a prefetcher-less baseline. RDIP
also comes within 2% of the performance achieved by the
state of the art prefetcher (PIF). Unlike PIF, which requires
impractical storage and considerable complexity, RDIP is
able to realize this performance improvement at one third
the hardware overhead and half the energy overhead.
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